Designing Cloud Data Platforms
Impossible d'ajouter des articles
Échec de l’élimination de la liste d'envies.
Impossible de suivre le podcast
Impossible de ne plus suivre le podcast
Acheter pour 22,40 €
Aucun moyen de paiement n'est renseigné par défaut.
Désolés ! Le mode de paiement sélectionné n'est pas autorisé pour cette vente.
-
Lu par :
-
Christopher Kendrick
À propos de cette écoute
Centralized data warehouses, the long-time de facto standard for housing data for analytics, are rapidly giving way to multi-faceted cloud data platforms.
Companies that embrace modern cloud data platforms benefit from an integrated view of their business using all of their data and can take advantage of advanced analytic practices to drive predictions and as yet unimagined data services. Designing Cloud Data Platforms is a hands-on guide to envisioning and designing a modern scalable data platform that takes full advantage of the flexibility of the cloud. As you listen, you’ll learn the core components of a cloud data platform design, along with the role of key technologies like Spark and Kafka Streams.
You’ll also explore setting up processes to manage cloud-based data, keep it secure, and using advanced analytic and BI tools to analyze it.
About the Technology
Well-designed pipelines, storage systems, and APIs eliminate the complicated scaling and maintenance required with on-prem data centers. Once you learn the patterns for designing cloud data platforms, you’ll maximize performance no matter which cloud vendor you use.
About the Audiobook
In Designing Cloud Data Platforms, The authors reveal a six-layer approach that increases flexibility and reduces costs. Discover patterns for ingesting data from a variety of sources, then learn to harness prebuilt services provided by cloud vendors.
What's inside:
- Best practices for structured and unstructured data sets
- Cloud-ready machine learning tools
- Metadata and real-time analytics
- Defensive architecture, access, and security
For data professionals familiar with the basics of cloud computing, and Hadoop or Spark.
About the Authors
Danil Zburivsky has over 10 years of experience designing and supporting large-scale data infrastructure for enterprises across the globe. Lynda Partner is the VP of Analytics-as-a-Service at Pythian, and has been on the business side of data for over 20 years.
PLEASE NOTE: When you purchase this title, the accompanying PDF will be available in your Audible Library along with the audio.
©2021 Manning Publications (P)2022 Manning PublicationsVous êtes membre Amazon Prime ?
Bénéficiez automatiquement de 2 livres audio offerts.Bonne écoute !