• Dr. Oliver Hinder: Gradient Descent for Solving Linear Programs

  • Jun 18 2022
  • Durée : 41 min
  • Podcast

Dr. Oliver Hinder: Gradient Descent for Solving Linear Programs

  • Résumé

  • Oliver Hinder is an Assistant Professor in Industrial Engineering Department at University of Pittsburgh. Before that he was a visiting post-doc at Google in the Optimization and Algorithms group in New York and received his PhD in 2019 in Management Science and Engineering from Stanford working with professor Yinyu Ye. He studies local optimization, gradient descent, both convex and nonconvex problems, etc.

    We chat about Oliver moving to the U.S. from New Zealand to start his PhD at Stanford; we talk about some of his recent work on gradient descent methods for solving LPs accurately and how using restarts can benefit algorithms like these. Finally, we touch on automated parameter tuning in ML especially in Deep Learning which is being widely used in many applications.

    Check it out!

    Afficher plus Afficher moins
Les membres Amazon Prime bénéficient automatiquement de 2 livres audio offerts chez Audible.

Vous êtes membre Amazon Prime ?

Bénéficiez automatiquement de 2 livres audio offerts.
Bonne écoute !

    Ce que les auditeurs disent de Dr. Oliver Hinder: Gradient Descent for Solving Linear Programs

    Moyenne des évaluations utilisateurs. Seuls les utilisateurs ayant écouté le titre peuvent laisser une évaluation.

    Commentaires - Veuillez sélectionner les onglets ci-dessous pour changer la provenance des commentaires.

    Il n'y a pas encore de critique disponible pour ce titre.