Gratuit avec l’offre d'essai

Écouter avec l’offre

Aperçu
  • The Signal and the Noise

  • Why So Many Predictions Fail - but Some Don't
  • De : Nate Silver
  • Lu par : Mike Chamberlain
  • Durée : 16 h et 21 min
  • 3,7 out of 5 stars (6 notations)

Écoutez en illimité un large choix de livres audio, créations & podcasts Audible Original et histoires pour enfants.
Recevez 1 crédit audio par mois à échanger contre le titre de votre choix - ce titre vous appartient.
Gratuit avec l'offre d'essai, ensuite 9,95 €/mois. Résiliez à tout moment.

The Signal and the Noise

De : Nate Silver
Lu par : Mike Chamberlain
Essayer pour 0,00 €

9,95 € par mois après 30 jours. Résiliez à tout moment.

Acheter pour 20,70 €

Acheter pour 20,70 €

Utiliser la carte qui se termine par
En finalisant votre achat, vous acceptez les Conditions d'Utilisation. Veuillez prendre connaissance de notre Politique de Confidentialité et de notre Politique sur la Publicité et les Cookies.

Description

Updated for 2020 with a new Preface by Nate Silver.

Nate Silver built an innovative system for predicting baseball performance, predicted the 2008 election within a hair’s breadth, and became a national sensation as a blogger - all by the time he was 30. He solidified his standing as the nation's foremost political forecaster with his near perfect prediction of the 2012 election. Silver is the founder and editor in chief of the website FiveThirtyEight.

Drawing on his own groundbreaking work, Silver examines the world of prediction, investigating how we can distinguish a true signal from a universe of noisy data. Most predictions fail, often at great cost to society, because most of us have a poor understanding of probability and uncertainty. Both experts and laypeople mistake more confident predictions for more accurate ones. But overconfidence is often the reason for failure. If our appreciation of uncertainty improves, our predictions can get better too. This is the “prediction paradox”: The more humility we have about our ability to make predictions, the more successful we can be in planning for the future.

In keeping with his own aim to seek truth from data, Silver visits the most successful forecasters in a range of areas, from hurricanes to baseball to global pandemics, from the poker table to the stock market, from Capitol Hill to the NBA. He explains and evaluates how these forecasters think and what bonds they share. What lies behind their success? Are they good - or just lucky? What patterns have they unraveled? And are their forecasts really right? He explores unanticipated commonalities and exposes unexpected juxtapositions. And sometimes, it is not so much how good a prediction is in an absolute sense that matters but how good it is relative to the competition. In other cases, prediction is still a very rudimentary - and dangerous - science.

Silver observes that the most accurate forecasters tend to have a superior command of probability, and they tend to be both humble and hardworking. They distinguish the predictable from the unpredictable, and they notice a thousand little details that lead them closer to the truth. Because of their appreciation of probability, they can distinguish the signal from the noise.

With everything from the health of the global economy to our ability to fight terrorism dependent on the quality of our predictions, Nate Silver’s insights are an essential listen.

©2012 Nate Silver (P)2012 Penguin Audio
Les membres Amazon Prime bénéficient automatiquement de 2 livres audio offerts chez Audible.

Vous êtes membre Amazon Prime ?

Bénéficiez automatiquement de 2 livres audio offerts.
Bonne écoute !

    Ces titres pourraient vous intéresser

    Couverture de On the Edge
    Couverture de Superforecasting
    Couverture de Designing Data-Intensive Applications
    Couverture de Naked Statistics
    Couverture de The Black Swan, Second Edition: The Impact of the Highly Improbable: With a new section: "On Robustness and Fragility"
    Couverture de How Not to Be Wrong
    Couverture de Going Infinite
    Couverture de Behave
    Couverture de The Man Who Solved the Market
    Couverture de Ne coupez jamais la poire en deux
    Couverture de Principles for Navigating Big Debt Crises

    Commentaires

    "One of the more momentous books of the decade." (The New York Times Book Review)

    "Mr. Silver, just 34, is an expert at finding signal in noise.... Lively prose - from energetic to outraged...illustrates his dos and don’ts through a series of interesting essays that examine how predictions are made in fields including chess, baseball, weather forecasting, earthquake analysis and politics...[the] chapter on global warming is one of the most objective and honest analyses I’ve seen...even the noise makes for a good read." (New York Times)

    "A serious treatise about the craft of prediction - without academic mathematics - cheerily aimed at lay readers. Silver's coverage is polymathic, ranging from poker and earthquakes to climate change and terrorism." (New York Review of Books)

    Ce que les auditeurs disent de The Signal and the Noise

    Moyenne des évaluations utilisateurs. Seuls les utilisateurs ayant écouté le titre peuvent laisser une évaluation.
    Global
    • 3.5 out of 5 stars
    • 5 étoiles
      3
    • 4 étoiles
      0
    • 3 étoiles
      2
    • 2 étoiles
      0
    • 1 étoile
      1
    Interprétation
    • 4 out of 5 stars
    • 5 étoiles
      3
    • 4 étoiles
      0
    • 3 étoiles
      0
    • 2 étoiles
      1
    • 1 étoile
      0
    Histoire
    • 4 out of 5 stars
    • 5 étoiles
      2
    • 4 étoiles
      1
    • 3 étoiles
      0
    • 2 étoiles
      0
    • 1 étoile
      1

    Commentaires - Veuillez sélectionner les onglets ci-dessous pour changer la provenance des commentaires.

    Trier par :
    Filtrer
    • Global
      5 out of 5 stars
    • Interprétation
      5 out of 5 stars
    • Histoire
      5 out of 5 stars

    Exiting the world of certainty

    Detecting signals takes a Bayesian approach based on continously updating predictions with experience. The book takes you there step by step through examples. I like it because it's how I've been writing AI predictive algorithms for 30+ years including planning software that is based on forecasting.

    Une erreur s'est produite. Réessayez dans quelques minutes.

    Merci. Votre vote a été pris en compte.

    Vous avez donné votre avis sur cette évaluation !

    1 personne a trouvé cela utile